An Analysis of the Electronic Spectra of Bisaminecobalt Halides. The Effect of Low Symmetry and of Steric Hindrance

By A. B. P. LEVER and S. M. NELSON

[Chemistry Dept., Faculty of Technology, University of Manchester (A.B.P.L.), and Chemistry Dept., Queen's University of Belfast]

We have studied the electronic absorption spectra $(5000-30,000 \text{ cm}.^{-1})$ of thirty-three tetrahedral complexes of formula $(\text{Amine})_2 \text{CoX}_2$ where the amine is quinoline, isoquinoline, 2,6dimethylpyrazine, pyridine, or a 2-, 3-, or 4substituted pyridine, and X is Cl, Br, I, NCS, NCO, or NCSe. The Table illustrates typical examples of the spin-allowed absorption observed in the near-infrared and visible regions of the spectrum.

The results may be generalised:

(a) The visible absorption spectra are typical for tetrahedral cobalt derivatives and show no phenomena attributable to the lower symmetry (C_{2w}) .

(b) For a given halide or pseudo-halide, the absorption maxima in the visible region are independent of the amine to a close degree of approximation. (c) The near-infrared absorption consists of three components whose total bandwidth is some 1500—2000 cm.⁻¹ greater than the bandwidth observed in corresponding tetrahedral CoX_4^{2-} derivatives.¹ These are assigned tentatively (in C_{2v} symmetry) to the transitions ${}^{4}A_{1} \rightarrow {}^{4}A_{2}$, ${}^{4}A_{1} \rightarrow {}^{4}B_{2}$, ${}^{4}A_{1} \rightarrow {}^{4}B_{1}$ in order of increasing energy, respectively. Such assignments are based on a calculation derived from reasonable assumed single electron energies, and from the earlier polarisation data of Ferguson.²

(d) Two of the three near-infrared maxima are roughly independent of the amine for a given halide. The third, and highest energy component, is roughly constant for all sterically unhindered amines but drops in energy by as much as 1000 cm.⁻¹ when a sterically hindered amine is employed.

Such behaviour which has not been previously observed may be rationalised by consideration of

¹ F. A. Cotton, D. M. L. Goodgame, and M. Goodgame, J. Amer. Chem. Soc., 1961, 83, 4690. ² J. Ferguson, J. Chem. Phys., 1960, 32, 528. the effect of lengthening the cobalt-nitrogen bond on the ${}^{4}A_{2}$, ${}^{4}B_{2}$, and ${}^{4}B_{1}$ term energies. The ${}^{4}B_{1}$ term is expected to decrease markedly, should bond lengthening occur to minimise steric repulsion. The other terms would not be appreciably affected. and B follows the sequence

 $I < NCS < Cl \simeq NCO < Br$

(the variation of B overall is small).

Recently, Goodgame and Goodgame³ have

Absorption spe	ectra in cl	hloroform, an	nd calculated	10Dq /	and B values
----------------	-------------	---------------	---------------	--------	--------------

	λ_{\max} (c) (cm. ⁻¹)	10Dq	$B ({\rm cm.}^{-1})$
IQ2CoBr2 2-MePy2CoBr2 4-EtPy2CoBr2	16,640 (551), 15,950sh (950), 15,270 (1091), 9259 (85), 6830 (97), 5866 (88) 16,620sh (336), 15,730sh (584), 15,200 (735), 8537 (61), 6874 (76), 5832 (54) 16,690 (502), 15,820sh (857), 15,360 (955), 9264 (71), 6906 (85), 5955 (73)	$\begin{array}{r} 4428 \\ 4185 \\ 4462 \end{array}$	$\begin{array}{c} 659 \\ 673 \\ 654 \end{array}$

IQ = isoquinoline, MePy = methylpyridine, EtPy = ethylpyridine.

(e) Charge-transfer energies and quartet doublet transitions are not greatly affected by varying the amine.

(f) The mean crystal field splitting energy 10Dq, and the Racah parameter *B* have been calculated. Sterically hindered ligands give rise to lower values of 10Dq, and higher values of *B*, than unhindered amines. With variation of halide, 10Dq follows the sequence

 $I < Br < Cl < NCO \simeq NCS < NCSe$

considered the near-infrared spectra of a few of the compounds covered in this study. They report that in some cases part of the v_1 absorption $({}^{4}A_2 \rightarrow {}^{4}T_2$ in $T_d)$ was observed near 4000—4500 cm.⁻¹. We have also observed absorption in this region, but since we have also noted similar absorption in compounds such as (quinoline)₂ZnCl₂, we defer assigning these bands until we have completed a more detailed analysis of the absorption in this region. Certainly, amine combination bands or overtones occur in this region and may partly or wholly obscure the desired v_1 absorption.

(Received, March 26th, 1965.)

⁸ D. M. L. Goodgame and M. Goodgame, Inorg. Chem., 1965, 4, 139.